Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Nearest point on a hyperbola?
Hyperbola: 2x² - 7y² + 20 = 0
Point: (5, 0)
Find the point(s) on the hyperbola nearest the given point.
2 Answers
- 3 years agoFavorite Answer
d^2 = (x[2] - x[1])^2 + (y[2] - y[1])^2
2x^2 - 7y^2 + 20 = 0
2x^2 + 20 = 7y^2
(1/7) * (2x^2 + 20) = y^2
d^2 = (5 - x)^2 + (0 - y)^2
d^2 = 25 - 10x + x^2 + y^2
d^2 = 25 - 10x + x^2 + (1/7) * (2x^2 + 20)
d^2 = (1/7) * (7 * 25 - 7 * 10x + 7 * x^2 + 2x^2 + 20)
d^2 = (1/7) * (175 + 20 - 70x + 9x^2)
d^2 = (1/7) * (9x^2 - 70x + 195)
2d * dd/dx = (1/7) * (18x - 70)
dd/dx = 0
2d * 0 = (1/7) * (18x - 70)
0 = 18x - 70
0 = 9x - 35
35 = 9x
35/9 = x
2x^2 - 7y^2 + 20 = 0
7y^2 = 2x^2 + 20
7y^2 = 2 * (35/9)^2 + 20
7y^2 = 2 * (1225/81) + 20 * 81/81
7y^2 = (2 * 1225 + 20 * 81) / 81
7y^2 = 2 * (1225 + 810) / 81
7y^2 = 2 * 2035 / 81
y^2 = 2 * 5 * 407 / (81 * 7)
y^2 = 2 * 5 * 7 * 407 / (81 * 7^2)
y = +/- sqrt(407 * 7 * 10) / (9 * 7)
y = +/- sqrt(28490) / 63
(35/9 , sqrt(28490) / 63)
(35/9 , -sqrt(28490) / 63)
- PinkgreenLv 73 years ago
Let d be the distance from (5, 0) to the hyperbola 7y^2-2x^2=20, then
d^2=(x-5)^2+y^2
Let
F=(x-5)^2+y^2+a(7y^2-2x^2), where a=the multiplier
Let
Fx=(x-5)-2ax=0-------(1)
Fy=y+7ay=0---------(2)
From (2), get
y(1+7a)=0=>
a= -1/7---------(3)
putting (3) into (1) and eliminating a, get
x-5-2(-1/7)x=0=>
x=35/9=3.8889
7y^2-2(3.8889)^2=20=>
y=+/-2.6792
=>
the points required are
(3.8889, 2.6792) & (3.8889, -2.6792)